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Abstract

We consider finite rotation shells based on the generalized Reissner kinematics, with an additional scalar parameter describing a position
of the reference surface. Such kinematics is used to model composites with non-symmetric layer stacking sequence (LSS). Besides, we
assume that the element formulation includes additional local parameters such as these appearing in the enhanced strain elements and
in the mixed enhanced/non-enhanced elements based on the Hellinger-Reissner or Hu-Washizu functional.

The Design Sensitivity Analysis (DSA) provides derivatives for the design optimization but can serve also as a stand-alone tool
which allows to verify robustness of a design to inaccuracies caused by manufacturing and assembling as being particularly dangerous
for shells. In this paper, we describe the method to compute the design derivatives of displacements and rotations for the aforementioned
kinematics and element’s formulation. Besides, formulae for the design derivatives of shell strains and shell stress and couple resultants
for composites are presented.
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1. Characteristics of shell

The First Order Shell Deformation (FOSD) theory is based on
the Reissner kinematics with an additional parameter z0, which
describes a position of the reference surface. The position vector
of an arbitrary point of a shell is defined as

x(ζ) = x0 + (z − z0) Q0t3, z, z0 ∈ [0, h], (1)

where x0 is the position of the reference surface, t3 is the
shell director and h is the initial shell thickness. Besides,
Q0 ∈ SO(3) is a rotation tensor, parameterized by the canonical
rotation vector ψ as follows

Q0(ψ)
.
= I +

sin ω

ω
ψ̃ +

1− cos ω

ω2
ψ̃2, (2)

where ω = ‖ψ‖ =
√

ψ ·ψ ≥ 0 and ψ̃
.
= ψ × I. The

Green strain tensor is approximated linearly over the thickness,
i.e. E(ζ) ≈ ε + (z − z0)κ.

The effective (substitute) constitutive matrices for a multi-
layer composite shell are obtained by an integration over the shell
thickness accounting for the shift of the reference surface from
the middle position, see eq. (1). The effective transverse shear
stiffness is obtained as an inverse of the effective transverse shear
flexibility matrix obtained for cylindrical bending in two perpen-
dicular directions. This procedure was developed gradually in
[Whitney, Pagano, 1970], [Chow, 1971], [Whitney, 1973], [Ro-
hwer, 1988], [Vlachoutsis, 1992] and [Rolfes, Rohwer, 1997], see
e.g. [3], and is suitable also for composites with non-symmetric
LSS. Layers are assumed to be orthotropic and in plane stress.

2. DSA for shell elements with additional parameters

The geometric and material data for a layer of a composite,
such as a thickness, orthotropic material constants and an orien-
tation angle of orthotropy, are used as design parameters. We
denote a design parameter by h.

Assume that the discrete governing functional F depends
on two sets of variables: the nodal displacements uI and the el-
emental parameters q. For kinematically non-linear problems,
the stationarity condition of F (uI , q) yields a set of equilibrium
equations,

ru
.
=

∂F (uI , q)

∂uI
= 0, rq

.
=

∂F (uI , q)

∂q
= 0, (3)

which can be linearized in a standard way and solved using the
Newton method. For shells, uI denotes nodal displacements
and nodal rotational degrees of freedom.

Let us define the vector of residuals, r .
= [ru, rq]

T and
re-write the equilibrium equation as follows: r(h, z(h)) = 0,
where the state variable z .

= [uI , q]T depends on the design pa-
rameter h. Differentiation of the equilibrium equation w.r.t. the
design variable yields
Dr
Dh

=
∂r
∂h

+
∂r
∂z

dz
dh

= 0, (4)
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where the submatrices of the tangent operator are: K .
=

∂ru/∂uI , L .
= ∂ru/∂q, Kqq

.
= ∂rq/∂q. We note that

the same tangent operator is used to solve the equilibrium equa-
tions (3) by the Newton method. From these equations we calcu-
late the sensitivities dq/dh and duI/dh using

dq

dh
= −K−1

qq

„
∂rq

∂h
+ LT ∆uI

«
, K∗ duI

dh
= −

„
∂ru

∂h

«∗
,

(6)

where the reduced stiffness matrix and the design derivative of
the reduced residual are

K∗ .
= K− LK−1

qq| {z }
.
=AT

LT ,

„
∂ru

∂h

«∗
.
=

∂ru

∂h
− L K−1

qq| {z }
.
=AT

∂rq

∂h
, (7)
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for a symmetric non-singular Kqq and for A .
= K−1

qq LT up-
dated and stored using Scheme U2 of [1] p. 276. To perform
the DSA, we use K∗ and A from the last converged step of
the static analysis. We calculated the explicit design derivatives
of residuals ∂ru/∂h and ∂rq/∂h using direct differentiation.

3. Sensitivities of strains and stress/couple resultants

The shell strains {ε, κ} and the shell stress and couple resul-
tants {N, M} (corresponding to the 2nd Piola-Kirchhoff stress)
are the essential performance parameters and, therefore, we cal-
culate their design derivatives. Differentiation of a performance
Ψ = Ψ(h, z(h)) w.r.t. the design variable h yields

DΨ

Dh
=

∂Ψ

∂h
+

dΨ

dz
dz
dh

, (8)

where dz/dh
.
= [duI/dh, dq/dh]T was earlier computed

from eq. (6) and is treated as known. For instance, let Ψ
.
= N,

for which the effective constitutive equation is N = D0ε+D1κ.
Then, the derivatives are obtained as follows:

∂N
∂h

=
∂D0

∂h
ε +

∂D1

∂h
κ,

∂N
∂z

= D0Bε + D1Bκ, (9)

where ∂D0/∂h and ∂D1/∂h can be directly computed from
the input data e.g. using the semi-analytical or analytical method.
Besides, Bε and Bκ are the shell strain-displacement tangent
operators. Note that we have to differentiate also w.r.t. additional
parameters q because z depends on q. The design derivatives
DN/Dh and DM/Dh are printed out and displayed in our
program similarly as N and M.

4. Numerical example

The panel consists of a composite skin, composite omega-
shaped straight stringers and curved C-frames made of alu-
minium, see Fig. 1. The 8-layer composite has the symmetric
LSS: [45/-45/90/0]s. One curved boundary is clamped, all the
other boundaries are supported in a way which will be explained
during the presentation. The load consists of shear loads and
compressive loads. The model was computed for various mesh
densities, where nl = 4 denotes the densest mesh.
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Figure 1: Geometry of panel.

The calculation were performed using our 4-node finite ro-
tations enhanced strain element EADG5. The normal displace-
ment at the center of panel is monitored. Nonlinear equilibrium

curves were obtained using the arc-length method with the initial
∆F = 100 and are shown in Fig. 2a. The DSA was performed
along the solution path, for each converged configuration. The
design derivative w.r.t. the frame thickness is shown in Fig. 2b.
More DSA results for the panel and other benchmarks will be
presented during the conference.
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Figure 2: Normal displacements at the center of panel and its
sensitivity w.r.t. frame thickness
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