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Abstract

A computational model of three-dimensional trusses made of shape memory alloys is proposed. The model takes into account the
characteristic hysteresis loops in the pseudoelastic range of material behaviour. The derived incremental problem takes up the form of
a mixed linear complementarity problem (MLCP) and has been solved by a computer program developed by this author. Included are
numerical results for the elastic and pseudoelastic Mises truss.
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1. Introduction

Shape memory alloys (SMAs) are the active (often called
intelligent) materials which have found many innovative appli-
cations in different fields of science and engineering, includ-
ing aerospace and mechanical engineering, and bioengineering
[7, 2, 5, 1]. This is thanks to the shape memory effect and pseu-
doelasticity they exhibit, which ordinary metals and alloys do not
possess. Pseudoelasticity of a SMA, which is the property being
considered in this contribution, means that this material is capable
of sustaining large deformations (8-10%) and to retain to its non-
deformed shape upon unloading, at temperatures above a certain
temperature Af .

Our aim here is to obtain a workable computational model
for three-dimensional trusses made of SMAs in the range of the
pseudoelastic material behaviour.

2. Constitutive relations

We will present a computational model for trusses made of
shape memory alloys (SMAs) in the range of pseudoelasticity
(superelasticity). The idealized pseudoelastic response in a 1D
case is shown in Fig. 1, where characteristic hysteresis loops can
be observed. This advantageous feature of SMAs is a result of
martensitic phase transformations and amounts to large strains
of the order of 10%, which are recoverable during mechanical
loading-unloading cycles conducted at a constant temperature.
Martensitic phase transformation is a first-order reversible trans-
formation from a high temperature phase with greater symme-
try (austenite) to a low temperature phase with lower symmetry
(martensite). It can be induced by stresses, changes of temper-
ature, or magnetic fields. We build here on the concepts pre-
sented in [6, 8, 4] and consider the simplified case of a three-
phase material, i.e. two variants of martensite M+ and M−, or
Mm,m = 1, 2, and austenitic phase A. Let c1 and c2 denote
a volume fraction of martensite M1 and M2, respectively, and
c3 = 1− c1 − c2 be the volume fraction of austenite.

The adopted averaged Helmholz free energy, W̃ , of the
austenite/martensite mixture is a piecewise parabolic nonconvex
function. With the notations: ε – the total strain, ηm – the phase
transformation strain of variant m, ϖi(θ) – the free energy at a

stress-free state, the free energy can be defined as
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Figure 1: Pseudoelastic hysteretic behaviour

where additionally E,Bm are material parameters, cf [6, 4], and
I[0,1] is the indicator function of interval [0, 1].
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The axial stress is

σ ≡ ∂W̃/∂ε = E(ε− c1η1 − c2η2) (2)

The hysteresis loops in Fig. 1 can be described by the follow-
ing phase transformation rules (m = 1, 2)

if Xm(ε, cm) = κ3→m(cm) then ċm ≥ 0

if Xi(ε, cm) = κm→3(cm) then ċm ≤ 0

if κm→3(cm) < Xm(ε, cm) < κ3→m(cm) then ċm = 0

(3)

where

Xm = E(ε− cmηm)ηm − (ϖm −ϖ3)−
Bm

2
(1− 2cm)−Rm

is the driving force for the reversible phase transformation from
austenite to two variants of martensite (A → Mm), and κ3→m ≥
0, κm→3 ≤ 0 are threshold functions. A dot (ċ) stands for rates
of c, and Rm is an element of subdifferential ∂I[0,1].

3. Incremental problem

In transferring the material point relations (2), (3) to those
at the level of a truss bar (element) and the truss as a whole,
we use the displacement approach. For a typical element e of
the space truss, we have as unknowns its node displacements
qe = [u1 v1 w1 u2 v2 w2]

T
e and can express its nodal forces,

Qe = [U1 V1 W1 U2 V2 W2]
T
e , as

Qe = Keqe −GT
1,ec1 −GT

2,ec2 (4)

where Ke is the stiffness matrix and Gm,e depends on the prop-
erties of phases Mm and the element’s coordinates.

Accounting for the equilibrium conditions and displacement
compatibility, which are enforced at the current configuration, as
well as the phase transformation criteria (3), we finally formu-
late the incremental problem, from time level tn−1 to time level
tn, for a SMA truss as a mixed (nested) linear complementarity
problem (for mLCP see e.g. [3]),

Dxn + yn = bn,n−1

x′
n ≥ 0, y1

n = 0, yn ≥ 0, xn·yn = 0
(5)

The matrix D, vector of unknowns xn and vector of data
bn,n−1 in (5) have the following structure

D =



−K −GT GT

−G −H H −I

G H −H −I

I

I


xn =

{
∆qn ∆c+n ∆c−n r1n r0n

}T
bn,n−1 =

{
fn, n−1 b+

n−1 b−
n−1 1− cn−1 cn−1

}T
where K = KE + KG is the stiffness matrix of the truss, both
the elastic and geometric part, and H is a global matrix depend-
ing on the pseudoelastic properties of SMAs. Further, ∆qn is a
vector of finite increments of nodal displacements, ∆c+n , ∆c−n
are vectors of the positive and negative part, respectively, of a
finite increment of volume fractions.

The first row of the LCP (5) is the global equilibrium con-
dition, while the next two rows express the phase transformation
conditions (3) in global form. The last two rows are due to the
constraints imposed on finite increments of vectors c±n , with r1n
and r0n playing the role of lagrangian multipliers.

We have developed a computer program in Fortran 95, which
solves (5) and updates the configuration by the Newton method.

4. Numerical example

The obtained numerical results for a Mises truss, Fig. 2, are
shown in Figs. 3 and 4, where for comparison included is also the
elastic response. The data used: a = 200 cm, z0 = 80 cm, axial
stiffness EA=10000 kN, B=0.21 kN/cm2, η1 =0.07=−η2,
ϖm − ϖ3 = 0.595 kJ/cm3 (m = 1, 2). The logarithmic strain
measure was used.
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Figure 2: Mises truss
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Figure 3: Force P as a function of scaled top node displacement
w/z0 for elastic material (dashed line) and pseudoelastic SMA
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Figure 4: Volume fraction in SMA, c ∈ {c1, c2} , c1 · c2 = 0
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