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Abstract

A finite element method with mesh adaptivity is developed and applied to problems of material instability. Basis of the computational
method for large elastic-plastic deformations is the energy criterion of path stability [5, 6]. At a bifurcation point, the stable deformation
path is automatically selected if a time-independent, incrementally non-linear material model is used. The J2 corner theory [1] is
applied as a material model. To achieve a good approximation of the first bifurcation instant higher degree polynomials are used as
shape functions. Moreover, in order to reproduce analytically predicted discontinuities of the velocity gradient along the boundaries of
localization bands the mesh is allowed to move relative to the material when the incremental energy is minimized.
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1. Introduction

One way to numerically analyse localization phenomena in
elastic-plastic solids is to use an incrementally non-linear ma-
terial model combined with the energy criterion of plastic path
instability [5, 6]. On this basis, in recent years the formation
and post-critical evolution of shear bands have been successfully
studied by using a finite element discretization with linear ele-
ments [3, 4]. While satisfactory results have been obtained with
triangulations adapted to analytical results, simulation results for
the first bifurcation instant and corresponding fields become more
or less useless on arbitrary meshes constructed without apriori
knowledge of the expected deformation pattern. The approxi-
mation of the first bifurcation instant could be considerably im-
proved with a meshfree discretization method [2]. Apart from its
computational cost it is, however, a drawback of this technique
that discontinuities of the velocity gradient can not be reproduced
using standard moving least squares shape functions.

In the present work, the finite element discretization used in
[3, 4] is developed further by

• applying higher order elements and

• a realization of r-adaptivity.

It will be shown that even on initially arbitrary meshes the ac-
curacy of the numerically determined bifurcation instant and the
corresponding velocity fields are considerably improved.

2. Theoretical framework

Constitutive rate equations of a simple time-independent ma-
terial undergoing isothermal deformations are laid down in the
form

Ṡ =
∂U

∂Ḟ
= CḞ, C =

∂2U

∂Ḟ∂Ḟ
, U =

1

2
Ṡ · Ḟ, (1)

where S is the first Piola-Kirchhoff stress, F is the deformation
gradient, and a superimposed dot denotes the (forward) material
time derivative with respect to a time-like parameter t. A central
dot indicates an inner product. The velocity-gradient potential U
is assumed to be continuously differentiable and positively ho-
mogeneous of degree two in Ḟ so that the instantaneous moduli

C = CT depend on the direction of Ḟ in a non-linear and piece-
wise continuous manner.

We consider quasi-static deformations of a material body
with kinematically constrained boundary, either totally by a given
boundary motion or partially by periodicity conditions. Due to
the potential form of the constitutive law (1), the rate boundary
value problem in velocities is governed by Hill’s variational prin-
ciple which requires stationarity of the functional

J(v) =

Z
V

U(∇v) dV (2)

when prescribed nominal body forces and nominal surface trac-
tions are absent. V denotes the body volume and ∇ the gradient
in a given reference configuration.

Moreover, according to Petryk’s work on path stability (e.g.
[5, 6]), the velocity field of a stable deformation process is ob-
tained by minimizing the incremental energy on the set of kine-
matically admissible fields, which, under the present conditions,
amounts to minimizing the velocity functional (2).

3. Numerical approach

The computational domain is covered with a triangular mesh.
The coordinates of the mesh vertices relative to a fixed global co-
ordinate system are Xi, i = 1, . . . , NV . Index i indicates the
global vertex number and NV is the total number of vertices.
Within each triangle, the velocity field is interpolated by

v(X) =

NSX
j=1

vjϕj(X), (3)

where vj denote the nodal values, j is the local index of nodes
introduced to construct (higher degree) polynomials being shape
functions ϕj and NS is the number of shape functions within
each triangle depending on the polynomial degree.

In order to evaluate Petryk’s stability criterion numerically,
the functional (2) is minimized with respect to nodal values vj

and vertex positions Xi subjected to inequality constraints serv-
ing as bounds for the quality of each triangle. The resulting dis-
cretization procedure can be understood as a subparametric finite
element method with simultaneous r-adaptivity.
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Figure 1: Distribution of the w,22 component of the velocity-
gradient of the bifurcation mode when (2) is minimized with re-
spect to nodal velocities vj only.

4. Computational examples

The constitutive rate equations (1) are specified by the J2 cor-
ner theory [1]. An initially homogeneous material body is sub-
jected to overall plane strain isochoric compression, such that the
non-zero components of the deformation gradient F̄ are

F̄11 = 1− t, F̄22 = (1− t)−1, F̄33 = 1, (4)

on an orthonormal basis. Computational examples will be pre-
sented for domains with kinematically constrained boundaries
and for rectangular domains with periodic boundary conditions.
Periodic boundary conditions are of interest in order to simulate
the behaviour of an infinite continuum subject to a given mean
deformation with gradient F̄. For this case numerical results can
be compared with theoretical findings from Petryk’s local stabil-
ity analysis. Numerically determined quantities are

• the critical instant of primary bifurcation t? when the ve-
locity field v̄ corresponding to uniform deformation ceases
to minimize the discretized functional (2) and

• the bifurcation mode w so that v = v̄ + w is the actual
minimiser of (2) at the critical instant t?.

5. Sample simulation results

Figures 1 and 2 represent results from a sample computation
with periodic boundary conditions. For the underlying material
data the critical instant of ellipticity loss is t?

th = 0.2744. The
considered domain is a square at t?

th. With cubic polynomials
as shape functions ϕ the critical instant is numerically detected at
t? = 0.2769 on the non-regular mesh depicted in Fig. 1. The the-
oretical value t?

th is thus approximated with an error of only 0.9%
whereas using linear shape functions on the same mesh would
increase this error to 42.6%. Minimizing the discretized velocity
functional at t? with respect to nodal velocities vj only (based on
a fixed mesh) yields a velocity gradient distribution as depicted
in Fig. 1 for the w,22 component.
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Figure 2: Distribution of the same field as in Fig. 1 and the re-
arranged mesh when (2) is minimized with respect to both nodal
velocities vj and vertex coordinates Xi.

This distribution as well as the mesh geometry are drasti-
cally changed (Fig. 2), when the nodal coordinates are no longer
fixed, i.e. when the minimization is performed with respect to
both nodal velocities vj and vertex coordinates Xi.

Fig. 2 shows the distribution of the w,22-component of the
velocity-gradient field and the resulting mesh. Obviously, the pre-
sented discretization method provides the theoretically predicted
rank-1 solution with two different piecewise constant regions of
the velocity-gradient.
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