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Abstract

This paper reports on the implementation details of a fullyomatic p-adaptive procedure to select the approximation bases of
the displacement model of the hybrid-Trefftz finite elem&mwulation. The formulation allows for the direct appnation and
enrichment of two independent fields, the displacementseimiomain and the surface forces on the element boundagerigrolling

the strain energy of the system for a prescribed finite elémesh, thg-adaptive algorithm uses the nonconformity and nonequitib
error minimization criteria to identify the boundary andhanin regions where the degree of the surface force and deaplent bases
should be increased or alternatively in which elements therkatic indeterminacy number of the domain bases shoukhliehed.
Numerical results demonstrate the efficiency of the algoriand the feasibility of carrying out automagi@adaptive enrichment in 2D
elastostastic analyses.

Keywords: Hybrid-Trefftz displacement model, p-adapti\@D elasticity

1. Introduction The displacement field in the domdiff is approximated as a
linear combination of the displacement approximation fioms:

The hybrid-Trefftz displacement formulation requires the
simultaneous approximation of two fields, the displacemémt
the domain and the surface forces on the element boundary.

The domain approximation basis must satisfy simultangousl
the equilibrium, compatibility and constitutive condit® or
their combination in the Navier description of the govegnin
differential equation.

The inter-element continuity and the kinematic boundary.
conditions are enforced on average using the independdatsu

force approximation pasis. L . inter-element boundary and for every boundary of the askEmb
The implementation approach consists in accepting both the ctyre whereon the displacements are prescribizd,
domain and the boundary finite element degrees of freedom

as explicit variables. The finite element mesh is built on few¢ = Tp onr, 2)

elements with a general geometry. They may not be bounded,

convex or simply connected and they may have an arbitrarMatrix T' collects surface forces approximation functions and the

number of sides with parametric description as the appration ~ weighing vectorp represent generalized surfaces forces.

functions are not associated to nodes. By imposing the compatibility on all sides that do not belong
Thep-adaptive procedure presented in this paper is designetb the static boundaries and equilibrium in all elements in a

to allow the automatic selection of the optimal order of theweighted residual form, following the procedure descritveld],

approximation functions on the domain of the element and orthe finite element governing system is:

its boundaries to obtain a given level of accuracy.

u:U1q1—|—U2q2+up invV° (1)

Matrices U, and U collect the strain inducing functions
selected from the solution of the governing differentialiipn
of the problem and the rigid body modes, respectively. Mscto
g1 and g2 contains the weights of the linear combination,
representing generalized displacements. Veatpcan be used
to include particular solutions.

The surface forces are independently approximated on every

This accuracy is measured on the strain energy of the syste K o -B q, Xo1
for a prescribed finite element mesh. o o —B: gy p =1 Xo2 (3)
The present work extends into elastostatic analysis [4]] —Bf —BZ o p —ur
the p-adaptive procedure originally reported for Laplace
problems [5]. The finite element arrays present in system (3) are defined by

boundary integral expressions, as follows:
2. Finite element framework

K:/UlTTldFe (4)
The finite element model being used develops from the
independent approximation of the displacement and tmactio B,= [ U7 T dI'’, i=1,2 (5)

fields in each domai“ and on the Dirichlet boundary;s,.
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Xo@:/U;‘Ftr are i=1,2 (6) o ensure that a particular continuity condition is not over
constrained (10), which may lead to the development of spsri
T . modes in the solution.
UF:/T urdl’y ™ The sources of error that affect this type of element are
the lack of conformity either between connecting elememts o

The structure of the governing system for the assembled mestn the Dirichlet boundary and the lack of equilibrium betwee
is identical to that of the elementary system, featuringghlyi  the assumed tractions (2) and the tractions induced by the
sparse format and a quasi-uncoupled form, as the genefalisalisplacement approximation (1).
displacementsg; and g- are strictly element dependent and
the generalised surface forcgs are shared at most by two 4. Selectivep-adaptive procedure
connecting domain elements. MatriX is block diagonal and
collects the elementary stiffness matrices (4). The bognda
equilibrium matricesB; are associated with the surface force
vector shared by domain elements connecting on the sa
boundary elemerit?, .

This structure is particularly well suited to adaptive
p-refinement [5] and parallel processing [2]. 4.1. Enrichment of the domain approximation basis

The p-adaptive algorithm presented here uses the
nonconformity and non-equilibrium error minimizationterion
Mg identify the boundary and domain regions where the degfree
the surface force and displacement bases should be indrease

Assume that a new strain-inducing displacement nigdées
added to the approximation (1) in a particular domain eld@men
with u, =0.

To perform analyses with hybrid-Trefftz displacement Thzé enriched displacement approximation,
elements the number of options the analyst faces in degjgnin ~
the mesh is wide, as each element may have a different number = U1(q; + Aq;) + U2(q, + Agq,y) + U1AG (12)
of sides and different approximation bases (1) and (2) can be
implemented in the domain and on the boundary of the elementadds a new degree of freedom to the solutlojy and produces

This decision has a direct effect on the quality and, evéiytua @ variation,
on the stability of the solution, and cannot be handled gafet T
efficiently by inexperienced users. Az” =[Aq, Agy Ap] (13)

The elementary approximation bases (1) are non-nodal and

) ] ) i on the current solutiom” = [q, q, p]. A new equilibrium
naturally hierarchical, selected from the solution of tbearning S A1 22 .
differential equation of the problem. equation is added to the solving system (3), which extends to

3. Design of the mesh

No constraints are placed a priori on the surface % _
approximation functions (2), namely in what concerns regtyl I_fT If_(l g gl q1Xéq1 A)%(}l
and continuity. However, to ensure convergence, the sarfac 01 0 0 Tt ‘2 = ot (14)
forces approximation basi¥' is assumed to be contained in r T " —B> q2+Aq2 X o2
traction basis induced by the domain approximation. -B1 -B; -B; O p+ap —vr

In particular, the relative dimensions of the domain and
boundary approximation bases cannot be set independently.

For example, in two-dimensional elastostatic application
with uw, = 0, matrix U, and U, collect three rigid-body
modes and3 + 4(d, —1) strain-inducing polynomial modes,
respectively, yielding:;, degrees of freedom:

The contribution of the new degree of freedom to the stiffnes
matrix, K1 and K, is computed from definition (4) and the
equilibrium matrixB1 from (5). The non-null entries of vector
K, are associated with the domain degrees of freedgm
assigned to the enriched domain element. All entries ofovect
B are null except for those that are associated with the degree
nS =2+4d, (8)  of freedom of variablg assigned to the boundary of the enriched
domain element. Scalak X(; is computed using definition (6)
The dimension of the polynomial terms of degree in the tomcti for the a boundary of the enriched element whereon a non-

mode matriXZ" in approximation (2) is, homogeneous Neumann condition holds.
The compact form of the extended solving system is:

np
ng =Y an(din + 1) + ai(di + 1) 9) A C1fAz) _ o 15

i=1 ct K Aq [ | AXoi—Xo (15)
whered,, /) is the degree of traction approximations on normal

A ; . . where
and tangential direction andf, ,, =1 if traction components are
approximated om or ¢ direction. C'"=|K| 0 —Bj] (16)
Under the assumption that the elementary approximation_ _ _

bases (1) and (2) are complete and linearly independent, th&o1=Kiq,—Bip (17)

domain degrees of freedom are necessarily independentand t

following condition on the kinematic indeterminacy numtmér The variation on the current solutichz = @Aq, is obtained

after computing the gradient of the current solution, from

the element, Eqn. (15.a), using the factorized form of the previous syste
Be=nc —nt>0 (10)  matrix A, and the new degree of freedafyy, from (15.b):
is, in general, sufficient to ensure that the same propetstior ~ Agi = (AXo1 — Xo1)/Xo1 (18)

the boundary degrees of freedom of the assembled mesh|do yie ) .,
with Xo1 = K + C" &. The variation in the strain energyU is
Bstr = Ng — Np > 3 (11)  determined from the incremental form of the following defimi:

However, due to the vectorial nature of the conformity

5T o1 =T . - _\2
condition (3.c), the conditions above may not be sufficientA3U=(U+K1 ql)A‘Z1+§(U+2K1 4. +K)(Aq) (19)
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5. Refinement strategy

A spurious mode is added to the displacement approximation

basis whenX,; =0 in (18) and consequently has no solution

when this result combines withA Xy —Xo1#0 and is
undetermined otherwise.

The objective of ap-refinement algorithm is to find the
optimal sequence of combinations for the degrees of freedom
of the approximation in each domain and boundary element tha

The error in equilibrium added to the domain approximationensures the convergence of the finite element solution.

is defined as,
ey = (AX(H—X(H)/V (20)
andV represents the surface of the domain element.

4.2. Enrichment of the boundary approximation basis

The optimal criterion of the p-adaptive process for
problems modelled by conforming elements is the minimarati
(maximization) of the strain energy for the assembled mesh.
However, the p-refinement of the solutions produced by
the hybrid displacement models do not, in general, induce
a monotone convergence on strain energy as the hybrid
displacement elements do not, in general, produce kineailgti

Assume that the surface forces approximation (2) in aggmissible solutions [1, 3].

particular boundary element is enriched by adding a newegegr
of freedom Ap, to produce a variatiomAp of the current
solutionp. -

The traction approximation enriched wifh

t=T(p+ Ap) +TAp (21)

leads to a new compatibility equation to the solving systa8jm (
which extends to:

K O -B _Bl q,+Aq, Xo1
O O -B; —B:| )g,+Aq, Xo2 (22)
-BY —-BT o© (0 p+Ap () —vr
|-B] -B; O O Ap —Adr
or in compact form:
A -B Az o
v o [ e e} @
where the following definitions are adopted,
B"=[B] B; O] (24)
or=Ba,+B:q, (25)

Vectors B; (i = 1,2) and scalarAur are computed from
definition (5) and (7) for the newly added polynomial funatib.

The variation on the current solution
Az =xAp (26)
is obtained after computing the gradienof the current solution
with respect to the added degree of freedom, from (23.ajgusi
the factorized form of the previous system matrix, afgh
computed from (23.b):

Aﬁ = (A'Dr — @F)/'[)F
or=B1q,+B3q,

27)
(28)

The increment on the strain energy of the system is computed

from the following definition:

. 1
AU = (41 Kq,)Ap + 5

A spurious g-mode is exposed whernr=0 in (28)

(41 Kq,)Ap° (29)

The p-adaptive algorithm was developed with two
independent domain enrichment criteria in combinationhwit
the boundary approximation basis enrichment strategyritbest
in Section 4.2.

The first approach uses the kinematic indeterminacy number
to ensure hyperkinematic solutions at both elemgnt(0) and
structure (s: > 3) levels.

The second approach uses the minimization of the sources
of error of the hybrid-Trefftz displacement model, namely
the error in equilibrium and in conformity for the degrees
of freedom added to the domain and boundary approximation
bases, (20) and (30).

5.1. Fastp-adaptive algorithm

The algorithm described below combines the enrichment
of the boundary basis directed by the largest conformitgrerr
density (30) and the enrichment of the domain basis to ensure
hyper kinematic solutions. The progressive constrainifig o
the solution is implemented by adding one boundary degree of
freedom at each step. To ensure that the domain basis isetanpl
an even number of degrees of freedom is added whenever this
operation of global relaxation is implemented.

The implementation of the boundary basis enrichment has a
reduced computational complexity compared with the adtiva
of enriching the domain basis. This algorithm is ternfiest and
its pseudo code develops as follows:

Input: initial uniform approximationd’, d9)

Check forg. >0 andgjs.- >3 and increasd,, if necessary

For each boundary element and each new dof compute:

or andsp.

If spurious modes or indeterminacy condition holds in (28)
goto (qSPM)

Endif

Implement (27), update boundary basis for the large$80)

Updategs., check (11) and increask, by two if necessary.

For each element connected to the enriched boundary,

check forg. <0 and implement:

(gSPM) Increasd,, by two, update3. andfs;;.

Compute the new solution and update strain energy (29).
Endfor
If the AU < ey or highest degree of the approximation bases
exceeds the given upper bound.

Stop
Endfor

and consequently has no solution when this result combines.2. Completg@-adaptive algorithm

with Avr —or ;é 0.

The error density in conformity on the boundary element

The second algorithm implements the control of the

of length L for the degree of freedom added to the boundaryequilibrium error density (20) minimization criterion tdentify

approximation bases is defined as,

er = (A@F—'Dr)/L (30)

the domain elements where the approximation basis should be
increased. The enrichment of the boundary basis is directed
by the largest conformity error density (30). This algamth
termedcomplete obtains a smoother solution, as compared with
the fast algorithm, at the expense of increased computdtion
cost and programming complexity.  This algorithm, based
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on the experience gained, can efficiently and safely identif
the optimal dimension of the approximation basis keepirg th
number of degrees of freedom reduced and providing an efficie
preprocessing tool.

The completg-adaptive algorithm develops as follows:
Input: initial uniform approximation 42, d2) and checkd’, for
even number
For each domain element and each new dof compuite(20),
Aq: (18) and estimate strain energyU (19)

E(r)];jf?erach boundary element and each new dof compute(:jF.'gure. 1:. Robinson plate, boundary conditions and FEM
. iscretization.
vr ander (30).

If spurious condition holds for (28)

(qSPM) Increasd,, by two in each element connected to
the enriched boundary

Implement (27) estimate strain energy (29)

The problem is solved for the mixed, Dirichlet and Neumann,
boundary conditions (om = +1 andy = +1) associated with
the following analytical solution:

Endfor
If the AU/U <ey ordy,dy > dy', di* Stop (0822 1.9 31a
For themax(ev;,, er;) increasel.,; by two ord;, by one e mg( 2 v —: ) (31a)
Compute the new solution and update strain energy using (19)y = —z"(z”~ — 3y°) (31b)
or (29). — 032 2 g2 31
Endfor 02z = —0.3 y(3ﬂg + 2y ) (31c)
oyy = 0.32y(18z" — y°) (31d)
6. Numerical results Oy = —0.962(22° — y?) (31e)

The performance of thg-adaptive approach is evaluated The convergence pattern of the norm of the relative error in
using four elastostatic problems. the §tra|n energy normalized by thg "exact" va[lz].e: 7.3728,

A polynomial approximation is used for the displacementsObta'“ed with a four element mesh, is presented in Figure 2.
in the domain elements, selected from the solution of the
bi-harmonic stress potential equation governing 2D e&iatm
problems for homogeneous and isotropic material.

No particular solutions u,, will be applied during -1
p-refinement tests as is assumed that the decision on thédnsict )
to be added and the number and location of the local solutien a
defined by user. The role of thpeadaptive procedure is to select
the optimal degrees of the polynomial approximations inheac ¥ -4
domaind, and on each boundary elemet, £

For problems with "known" strain energy the convergence of

the solution is measured using the finite element strairggriér -6 ‘ ‘ ‘ ‘ ‘ ‘

the energy error nor.rﬂU/Uo|, and the relative error norm -7 - Complete p-adaptive algorithma— i

ev =+/|1—-U/Uy| against the "exact" energljp. Otherwise the gl . . _

converge measure is the variation of energy increserelative Fast p-adaptive algorithm-o— : :

to the current energy= |AU/U|. _93.6 38 4 42 44 46 48 5 52
The initial approximations are uniform and the lowest In N

possible, usuallydl, = 1 for the displacement approximation
in all elements andl; =d%, = d% =0 on all sides for traction
approximations.

The typical pattern of the enrichment is based on a ] o
progressive constraining of the solution, adding a degtee The two algorithms show similar convergence patterns for a
sequentially on the boundary (the best strategy in terms ofélative energy errofAU|/Uo < 0.001%. The initial and final
illustration), and eventually a relaxation on the condisicoy ~ degrees for both algorithms are displayed in Table 1.
adding two degrees on the domai.

In all graphs concerning the-adaptive algorithm, the Table 1. Approximation degrees and system dimensions #r th
continuous lines represent sequences obtained by inogei®  complete (C) and fast (Fpradaptive algorithms (Robinson plate).

Figure 2: Convergence of the relative error norm in the strai
energy (Robinson plate).

degree on the boundary while keeping constant the degree in Domaing.,) d, on all sides

the domain. The discontinuities are due to the increaseef th Step 1 2 3 4 1-8 Dof

degree in the domain for the same degree on the boundary 1 1 1 1 1 0 40

approximation. 31F) 7 7 T 7 3 184
35(¢C) 5 7 7 5 3 168

6.1. Square plate
The square plate shown in Figure 1, with unit Young’s  The degrees of the approximation of the domain basis in some

modulus £ = 1 and Poisson’s ratior = 0.25, elements are higher than the minimum required. This is dtleeto
suggested by Robinson [7], is used to test the ability of theenrichment strategy adopted, described in Section 5, wikene
p-adaptive algorithm to converge to the exact solution. the operation of global relaxation is implemented (10),) (@4

when the spurious mode condition (28) verifies, the domain
basis,d., is increased by two. Possible errors induced by the
numerical approximations can also lead to overestimatfaheo
approximations order.
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In Figure 3 the numerical results obtained for the, Due to the symmetry only half of the problem is modelled
stress field onCB and BA boundaries are compared to the discretized with a three element mesh.
exact solution. Starting from the weakest possible satutiee The plate geometry, with measures »m, the boundary
algorithm reaches an accurate solution automatically. conditionsp = 10 and the adopted mesh are shown in Figure 5.
A unit Young's modulust = 1 and Poisson’s ratio = 0.3 is
used.
2 T T T T T T T Both, the fast and completp;adaptive algorithms follow the
P ] T S S o SR same convergence pattern and need 31 steps to reach comeerge
’ ‘ Coo Coo - ‘ o for £ <0.001%. The strain energy at the end of the enrichment
AR AR R SRR R R ARAL SRR ERRRIRR process and before the inclusion of the singular functions,
1] R P N is U=85471.5 obtained for the degrees of approximations
5 ‘ AAAAA AAAAAAAAAAAAA presented in Table 2.
O -ty g -rooot nitial A
osh/afass T 1. Final o Table 2: Degrees in the domain and boundary (plate with aaent
' ' ' ' ' ' ' Exact crack).
—1C ! E ! A Domain {.,) Boundary @)
. ) . Step 1 2 3 1 2 3 4 5 6 Dof
Figure 3: 0., stress estimates obtained with the complete 1 1 1 1 0 0 0 0 0 0 29
algorithm on the”' B and B A boundaries(Robinson plate). 31 9 9 7 2 3 2 1 7 5 152

) ) ) ) The convergence of the strain enefgyand the strain energy
The displacement and stress fields obtained with complet@ariation AU relatively to the strain energy/ is shown in
p-adaptive algorithm are shown in Figure 4. Figure 6 and Figure 7, respectively.

\ 130000 T T T T T T
120000 : : : : SR

110000

[

100000
=)

90000

80000
70000

60000

20 40 60 80 100 120 140 1

Figure 6: Convergence of the strain energy (plate with araent
crack).

J &

Figure 4: Displacemen6[06u] and stress fields,, [—2.2:2.2];
Oyy|—5.4:5.4]; 0zy[—1.9:1.9] (Robinson plate).

The final energy after the enrichment of the domain basis with
the singular crack functions & = 90502.44. Similar result

U =90494.87 is reported in [1] obtained with uniform degrees
yielding a system of 267 degrees of freedom.

The plate with a central crack subject to uniform tension -1

6.2. Plate with a central crack

is used to illustrate the modelling of high stress gradieatts ! ! ! ' ! !
the crack tip. The stress intensity factors are extractech fr
the solution after the conclusion of therefinement, when
the domain approximation is enriched with two independent _
(Mitchell) crack functions. The weights associated witles =
functions in the displacement approximation represenstiess 3
intensity factors for modes and /1, which are the opening and ~ _
shear mode respectively. -
p p- adaptlve algorlthm+ : : :
—_ Il 1 1
3.8 4 4.2 4.4 4.6 4.8 5 £
InN
20 ) _ o )
Figure 7: Convergence of the variation of the strain enepipté
with a central crack).
1 20 | 40 |
Figure 5: FEM mesh (plate with central crack). The estimates for the stress intensity factorsfdre= 160.55

andKrr = —2.24, while for an infinite plate the theoretical values
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are Ky = 159.32 and K;; = 0 [6]. The finite element solutions

for the stress and displacement fields are presented ine=gyur ' f
o ° : :
T Oyy ) S S D Hoq ]
D : :O
— Q "8 s
- E
e (0] S e I P S .
_12 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .
-14+ ‘ N NIRRT et .
Complete p—adaptive algorithre— :
_16 Il Il Il Il
3 3.5 4 4.5 5 5.
InN

Figure 10: Convergence of the variation of the relativeistra

Figure 8: Displacement(001w) and stress fields,.[—7:27]; energy (plate with a square hole).

oyy[—9:9]; o2y[—9:9] (plate with a central crack).

6.3. Plate with a square hole 05 : : : : :
A square plate with a square hole under uniaxial tractioh wit OF 8a o "6 Complete p-adaptive algorithme—
a singularity at wedge poirdt is considered witty = 1.0E'5 and -] ﬁ Fast p—adaptive algorithm=— |
v = 0.3. One quarter of the problem is modelled with a three ' ‘ ‘ j j j
element regular mesh and four boundaries whereon tractiens “lpeeee N o . ]
prescribed, Figure 9. 3-1,5 -------- N TR E T e S -
T oob e
2.5 SRR -
= 1 IS AR TN 00 A S 0768 © i
3 s e T
b -4 i i i i i
=] _r 3 35 4 4.5 5 55
=] InN
= 50 Figure 11: Convergence of the relative error norm in theirstra
= energy, complete algorithm (plate with a square hole).
10 -

50 | 50 |
Figure 9: Square plate with a square hole under uniaxidiorac

The final approximation degrees and strain energy for both
the complete and fast algorithms are presented in Table 3.

. . . . . Table 3: Approximation degrees in the domain and boundary
Local singular solutions at wedge poifitare avoided during and strain energy for the complete (C) and fast grdaptive

the p-adaptive procedure. . -
The convergence of the solution is measured using the ﬁnitglgonthms (plate with a square hole).

element strain energy, the energy error norfV /Uy |, and the Step U Iljomazln (d“:); 1 Bougdarys(it) )
relative error norney against the exact energ¥y = 0.1556(6) 1 002812 1 1 1 o o o0 o
given in [8]. '

The algorithm starts with 24 degrees of freedom, wiffk= 1 gég?) 8122’82 12 ig ig 142 121 192 S1)2

for the displacement approximation in all elements dne 0 on

all sides for traction approximations. ) )
The convergence pattern obtained fa{//U against the The final system yields 255 and 210 degrees of freedom for

number of degrees of freedom is presented in Figure 10. Thi1e fast and complete algorithms, respectively. Aftersaml

relative energy error admissibleds< 0.001% for the fast and |0c@l singular solution is applied at poidt to recover the high

complete algorithms. gradients Ioc_ally_present. The stress and displacemeds faek
As each dof is added sequentially (the best strategy in termEEPresented in Figure 12. . . .

of illustration), the fasp-adaptive algorithm converges after 61 ' e final energy obtained with singular local function arpoi

steps, while the complete algorithm converges after 43sstep C 1S U = 0.15522 andU = 0.15503 for the complete and fast

The convergence pattern obtained for the relative stragmggn ~ Versions of the algorithm.

norm against the number of degrees of freedom is presented in

Figure 11.
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Complete p—adaptive algorithm2—
1 1 Il ] Il

5 52 54 56 58 6 [

, NN - .
Uccy Figure 15: Convergence of thenstraln energy variation éphath
16 elements).

Figure 12: Stress and displacement field®(w) solution for the
complete algorithmo,.[—1:5]; oyy[—4:3.5]; 02y[—0.6:1.5]

(plate with a square hole). The convergence pattern for the strain energy and for the

strain energy variation|AU|/U, is presented in Figures 14
and 15.
The final degrees in the domain and on the boundary for the
complete and fast algorithms are presented in Figure 16. As
The 16 elements cantilever is used to test the robustness déxpected, higher degrees are obtained for regions of thewlith
the algorithms and the ability to handle problems with adarg high stress gradients.
number of domain and boundary elements.
The geometry of the model and the adopted mesh is shown
in Figure 13. The problem is solved with = 2.6, v = 0.3
andp = 1.

6.4. Short cantilever plate

Figure 16: Degrees in the domain and boundary with complete
(a) and fast (bp-adaptive algorithms (plate with 16 elements).

=== ===

j T o The stress and displacement fields are shown in Figure 17.

Figure 13: FEM mesh of square plate with 16 elements.

Oyy

The starting system dimension is 152 d.o.f. The complete
algorithm stops after 126 steps with 672 d.o.f and a finalggner
of U = 0.378635, while the fast algorithm needed 157 steps to
converge with 776 d.o.f and a final energyldf= 0.378074.

0.415 e ; ; . :
0.41F----- - #87]. Complete p—adaptive algorithma— |
0.405 Fast p—adaptive algorithmeo— |

0.4 R0 (R ERRE A AR
0.395 -4t & SRR SRR SR R,
030+ gl
03851~ ff - ARRERES RS
0.38 ? idouniynscasngig® ocm |
0.375F -4 ho- &--- O ! RSN
0.37 : : : : : :

1

L

400 500 600 700 ¢ Figure 17: Displacement0(001u) and stresso.,[—1:1];
InN Oyy[—0.7:04];  02y[—1.3:0.2] fields, complete algorithm

Figure 14: Convergence of strain energy (plate with 16 efes)e  (plate with 16 elements).

Il Il
00 200 300
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The results show that theadaptive algorithm is extremely References

efficient in identifying the regions necessary for the refieet.

7. Conclusions

The selective p-adaptive algorithm included in the
preprocessing phase of a special purpose FEM code is an
essential tool for selecting the order of approximationidas
for a given finite element mesh to solve a given problem. The

procedure has proven to be stable and efficient in idengftie

regions where refinement is necessary and can be implemented

with a minimal computational cost.

The results show that the complete algorithm can select more[3]
accurately the order of the approximation functions thanfést

version. The large number of steps reported for the diffetest

examples can be misleading as they result from launching the
process from the weakest possible starting basis and, fedso,

the option of enriching individually each basis in each sfEipe

number of steps can be substantially reduced by implenggntin
the strategy of enriching a set of boundary elements at @aph s

The use of local singular solutions to enrich the domain [5]
bases speeds up convergence and results in a reduction of the
polynomial bases implemented in the elements closer to the

singularity. However, the overall computational efficigris

affected by the implementation of the semi-analytical pchaes
required to process the corresponding singular functioesgmt

in the (boundary integral) definitions of the structural i@ers.
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