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Abstract

The paper deals with the compliance minimization of a transversely homogeneous plate, subjected to the in-plane and transverse
loadings acting simultaneously. The set of design variables includes the eigenstates of Hooke’s tensor whose eigenvalues (or Kelvin
moduli) fields are assumed fixed on the middle plane of the plate but no isoperimetric condition is imposed. The optimization task
reduces to an equilibrium problem of an effective hyperelastic plate with strictly convex effective potential expressed in terms of
strains. Theoretical considerations are illustrated by numerically calculated trajectories of the optimal eigenstate corresponding to the
largest Kelvin modulus.
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1. Introduction

Within the framework of thin, transversely homogeneous
plates the bending stiffnesses Dαβγδ (α, β, γ, δ run over 1, 2) are
determined by the in-plane stiffnesses Aαβγδ according to the
formula Dαβγδ = (h2/12) Aαβγδ , where Aαβγδ = h Eαβγδ ,
with h denoting the plate thickness and E representing the elas-
ticity tensor of the generalized plane stress. Thus the same tensor
A determines both the in-plane and out-of-plane response of the
plate. The topic of the present paper is the optimum design of
plates subject to arbitrarily directed loads, and with tensors A
belonging to a certain class T (Ω), where the elements of T (Ω)
determine A at each point x = (x1, x2) of the middle plane Ω.

Irrespective of the type of loading the description of defor-
mation of a transversely homogeneous plate splits up into the for-
mulae defining the in-plane strains and bending curvatures. The
in-plane displacements (u1(x), u2(x)) and the deflection w(x)
are found through independent boundary value problems. As a
result of optimization these fields are coupled, since the target
function usually involves both fields u and w. Among possible
target functions a particular attention is payed to the compliance
C = f(u, w), defined as the work of the loading on the unknown
displacements (some authors divide C by a norm of the loading,
which is a formal change if the loading is deformation indepen-
dent). It is worth pointing out that in case of compliance mini-
mization the adjoint formulation coincides with the original one,
which is a unique and remarkable feature of this problem. More-
over, the stress-based approach is possible, by the application of
the Castigliano principle.

In the present paper we consider the minimum compliance
problem of plates subject to an arbitrary loading. The design
variables are the eigenstates of tensor A while its eigenvaules
λi(x), i = 1, 2, 3 are kept fixed in Ω and treated as parame-
ters. These eigenvalues are called Kelvin moduli, see Ref. [2].
The fixing of Kelvin moduli replaces the isoperimetric condition
which is always introduced into the Free Material Optimization
(FMO) problems, see Ref. [1]. We prove that minimizing the
compliance of a plate made of material with the constitutive ten-

sor A ∈ T (Ω) is equivalent to the equilibrium problem of an
effective hyperelastic plate with the potential U(ε, κ) locally de-
termined by the maximization problem

U(ε, κ) =
1

2
max

A∈T (Ω)
[ε · (Aε) + κ · (Aκ)] , (1)

where κ = (h/
√

12)κκκ; here ε and κκκ are the measures of in-
plane and bending deformations. The symbol “ · ” stands for the
scalar product in the sense a · b = aαβ bαβ , where a, b denote
symmetric tensors. By setting T = Tλ, where Tλ denotes the
class of tensors A of given Kelvin moduli λi, i = 1, 2, 3, the po-
tential U can be determined explicitly, which is one of the aims
of the present paper.

2. The optimum design problem

Consider a plate of constant thickness h subject to the in-
-plane loading of intensity p(x) = (p1(x), p2(x)) and to the
transverse loading q(x). Define the virtual work of these loadings
on the test in-plane displacements v(x) = (v1(x), v2(x)) and on
the virtual transverse displacements v(x) as the linear form

f(v, v) =

Z

Ω

(p · v + q v) dx. (2)

Let ε(v) = (εαβ(v)) stand for the symmetric part of the gra-
dient ∇v, and set κκκ(v) = (καβ(v)), where καβ(v) = −v,αβ

with (·),α denoting partial differentiation ∂/∂xα. The stress re-
sultants N = (Nαβ) and couple resultants M = (Mαβ) are
linked with the strains by linear equations: Nαβ = Aαβγδεγδ ,
Mαβ = Dαβγδκγδ , with ε = ε(u) andκκκ = κκκ(w); u, w denot-
ing the unknown displacement fields. The plate is assumed trans-
versely homogeneous, hence A and D depend only on x ∈ Ω.
At each fixed point x ∈ Ω, tensor A admits the spectral decom-
position, see Ref. [2],

A = λ1 P 1 + λ2 P 2 + λ3 P 3, (3)

with P i = ωi⊗ωi, where ω1, ω2, ω3 stand for the second rank
tensors satisfying the orthogonality conditions ωi · ωj = δij .
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Tensors P i have the properties of projectors and λi are the num-
bers denoting the Kelvin moduli. According to Eqn (3) the tensor
field A(x), x ∈ Ω, is characterized by three symmetric tensor
fields ωi(x) and three scalar fields λi(x), i = 1, 2, 3. Consider
now all admissible forms of ωi(x) (yet satisfying the orthogonal-
ity conditions) while λi are kept fixed in Ω. Such set of tensors
fields A will be denoted by Tλ(Ω).

Let us define the plate compliance C = f(u, w), where
(u, w) solve the relevant equilibrium problem. The aim of
the present paper is to find the plate of lowest compliance C0

among the plates characterized by tensors A, D, such that D =
(h2/12)A and A ∈ Tλ(Ω). Thus the compliance C is viewed as
a functional of A, i.e. C = C(A). Our aim is to find such distri-
bution of the eigenstates ωi for which C(A) assumes a minimal
value

C0 = min
A∈Tλ(Ω)

C(A), or C0 = −2 min
(v,v)∈V

Jλ(v, v) (4)

where V represents the set of kinematically admissible displace-
ments and

Jλ(v, v) =

Z

Ω

Uλ(x)(ε(v), κ(v)) dx− f(v, v) (5)

while

Uλ(ε, κ) =
1

2
max
A∈Tλ

[ε · (Aε) + κ · (Aκ)] . (6)

The minimum compliance problem in Eqns (4) – (6) is equiv-
alent to the equilibrium problem of an effective plate with hyper-
elastic properties. Indeed, the stationarity condition of Jλ in Eqn
(5) implies the virtual work equation in which the stress and cou-
ple resultants are linked with strains by

N =
∂Uλ

∂ε
(ε, κ), M =

h√
12

∂Uλ

∂κ
(ε, κ) (7)

and κ = (h/
√

12)κκκ.
The principal feature of the optimal design problem consid-

ered is the solvability of the local problem in Eqn (6). Its solution
turns out to be

Uλ(ε, κ) =
1

4
(λ1 + λ2)(||ε||2 + ||κ||2)+

+
1

4
(λ1 − λ2)[(||ε||2 − ||κ||2)2 + 4(ε · κ)2]

1
2 (8)

where λ1 > λ2 and λ3 does not affect the final result. Having
found the strain fields ε, κ one can recover the eigenstates ωi but
this procedure is omitted here.

3. Examples of optimal design

For the simplicity of calculations we assume that the plate
is made of the material such that λ1 > λ2 = λ3. In this case,
optimal tensor A is orthotropic and admits the form

A = (λ1 − λ2)ω1 ⊗ ω1 + λ2I4, (9)

where I4 denotes the unit tensor in the space of Hooke’s tensors.
It is worth pointing out that A becomes isotropic if and only if√

2 ω1 = I2, where I2 is a unit tensor in the space of the second
order symmetric tensors.

Let us consider a rectangular plate, see Fig. 1, whose in-plane
displacements u1 = u2 = 0 along A − B and the transversal
displacement w = 0 along all the boundary of Ω. The plate is
subjected to the in-plane tractions along C −D whose resultant
equals P . The transversal load q is uniform in Ω.

Shown in the following figures are the trajectories of ω1, i.e.
the eigenstate corresponding to the greatest Kelvin modulus λ1 of
the constitutive tensor A, optimally oriented against given defor-
mation fields ε and κ whose trajectories are shown in Figs. 2, 3
respectively.

Figure 1: Middle plane Ω of a plate.

Figure 2: Trajectories of ω1(x, y).

Figure 3: Trajectories of ε(x, y).

Figure 4: Trajectories of κ(x, y).

It turns out that the results of the present research can be un-
derstood as the generalization of the solutions to the constitutive
tensor optimal orientation problems formulated for plates sub-
jected to the pure in-plane or bending loadings. It is a matter of
straightforward calculations to prove that optimal eigenstate ω1

are in these cases given by ω1 = ε/‖ε‖ and ω1 = κ/‖κ‖ re-
spectively.
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