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Abstract

A relatively simple method of finding discrete mimim structural weight is proposed. It is based drea graph, representing
discrete values of the structural volume. In theppsed method, the number of analyses is limitetidarder of two. The paper is

illustrated with an example containing up td%&@mbinations.
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1. Introduction

The design consists often in assigning to all stmat
members elements from the catalogue, assuring thenom
weight and fulfilment of imposed constraints. Sacprocess is
known, as Discrete Structural Optimization (DSO).

In the present paper, a relatively simple algamiths
proposed. The algorithm is based on the notion grfaph-tree,
representing the volumes of structural members ahdhe
whole structure [1]. The graph is explained in [2]

The algorithm is based on the assumption that\ubkime
obtained from the continuous minimum solution idower
bound for discrete minimum weights. In this stuthe idea of
applying the continuous minimum solution, as atstgrpoint
in a graph, representing structural volume, is redkeel to
dynamic cases.

The algorithm starts with a tree graph containinty dwo
branches. If one or more constraints are violatedme
adjustment of the cross section areas is performibd. same
procedure is performed, after enlarging the catadotp four,
six etc available parameters. The process of dngrgthe
catalogue is ended, when for two successive graftes,
obtained smallest discrete values are the same.

The paper is illustrated with a minimum weight desiL60
bar tower truss, containing #2xombinations.

2. The optimized structure

The structure under consideration is of a giverology and
composed of elements, denoted with subsgrft, 2, ..., fI.
The design consists in assigning to jHik structural membea
parameter, which is taken from listslSfavailable parameters,
such, as: thickness of a metal sH&gtross section areas (CsA)
A, and/or moments of inertif of a beam. Without loss of
generality, in further consideration only discred@timum
design of trusses is discussed. Parameters, iisttege denoted

k.
by superscripk=[1, 2, ..., K]. With above notationA]-J means

that k-th cross section area from the list is assigned-tto
structural member.

All structural members are made of a linear elasiaterial.
Small displacements and stresses, within elastigeaare
assumed for the whole structure. The structurabgested ta°
multiple static ana® dynamic loads. The most important part of
notations is as follows:

k - the number of the CSA assigned-tb structural member;

K.
AjJ —k; -th CSA from the list assigned jigh design variable

Find discrete cross section areas, taken fromt afliavailable
profiles,
jO
to minimize: W = Z A
J
j=1
subjected to equality constraints in the form odiilgrium
and motion equations and inequality constraintposed on
sizes, stresses (including buckling) displacemerasad
eigenfrequencies.

@)

3. Graph representation of the structural volume

All possible discrete values of structural voludie

jO
_N Lk
w= ZAj !
=L

can be represented by a graph with the tree stejafiiven in
[2].

Inspecting the graph represented (Fig. 1), it Gasden, that ex-
treme vertices, belonging to the same layer ofgreph (sub
graph), represent the smallest and the largesimesufrom all
possible volumes included in the layer.

It is assumed, that the structural volume, obtairfemn
continuous minimum solution, constitutes a loweurtb for all
values of discrete cost functions, fulfilling giveonstraints. It
means then, that discrete minimum voluwig,, is not smaller
than the continuous minimum volurke

\ S\Nmin (3)

This important graph property, is applied in finglithe discrete
minimum of the structural volume.

)
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Figure 1: Search for smallest feasible discret¢ ftogtion

4. The outline of the algorithm

» Find parameter€; (cross section areas) of structural
members, or linking groups of members, solving con-
tinuous minimum weight problem.

ki ki +1
«  Take, for eaclj-th structural memberA]-J and AJ-J ,

such, as the valug; obtained from the continuous so-
lution is included within the interval limited byeir

values:
ki ki +1
A’ <c A )
Farther steps can be deducted from FigDétailed steps are
given in [2].

5. Numerical example — 160 bar 3D truss

The example deals with the minimum weight desigid&fd-bar
truss (Fig.2) made of rolled pipes with sizes takem 1S808.
The data for the truss are taken from the paperTBg truss
members are linked in 38 independent groups of gdesi
variables. The structure is subjected to eightedifit sets of
loads. Buckling constraints for compression membars
considered. The CSA and radii of gyration, for thg 4
prescribed discrete sections are given in Table 1.

Figure 2: 160 bar truss structure
Table 1: CSA (crf) and radii of gyration (cm) for 160 bar truss
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