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Cahn-Hilliard system for microstructure evolution in viscoelastic solids. Asymptotic behaviour
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Abstract

In this paper the long-time behaviour of a unique regular solution to the Cahn-Hilliard system coupled with viscoelasticity is studied.
The system arises as a model of phase separation process in a binary deformable alloy. It is proved that for a sufficiently regular initial
data the trajectory of the solution converges to the ω-limit set of these data. Moreover, it is shown that every element of the ω-limit set
is a solution of the corresponding stationary problem.
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1. Introduction

We address the issue of the long time behaviour of
a system of PDE’s describing phase separation process
(spinodal decomposition) in binary viscoelastic solids quenched
below a critical temperature. The process is driven by thermome-
chanical effects which lead to microstructure evolution and asso-
ciated pattern formation. In recent years Cahn-Hilliard systems
accounting for elastic effects, known to have a pronounced im-
pact on the phase separation process, have been the subject of
many modelling, mathematical and numerical studies, see [1–3]
for up-to-date references.

2. Initial-boundary-value problem

The problem under consideration has the form of the follow-
ing viscoelasticity system coupled with the Cahn-Hilliard equa-
tions:

utt −∇ · [W,ε(ε(u), χ)

+ νAε(ut)] = b in Ω∞ = Ω× (0,∞),

u(0) = u0, ut(0) = u1 in Ω,

u = 0 on S∞ = S × (0,∞), (1)

χt −∆µ = 0 in Ω∞,

χ(0) = χ0 in Ω,

n · ∇µ = 0 on S∞, (2)

µ = −γ∆χ + ψ′(χ) + W,χ(ε(u), χ) in Ω∞,

n · ∇χ = 0 on S∞, (3)

where Ω ⊂ IR3 is a bounded domain with a smooth boundary S;
the unknowns are the fields u : Ω∞ → IR3, χ : Ω∞ → IR,
and µ : Ω∞ → IR, representing respectively the displace-
ment vector, the order parameter and the chemical potential;
ε(u) = 1

2
(∇u + (∇u)T ) is the linearized strain tensor; func-

tions W (ε(u), χ) and ψ(χ) are specified below, ν, γ are positive
constants.

System (1)–(3) represents balance laws of linear momentum,
mass, and the equation for the chemical potential. The associated
free energy density has the Landau-Ginzburg form

f(ε(u), χ,∇χ) = W (ε(u), χ) + ψ(χ) +
γ

2
|∇χ|2,

where

W (ε(u), χ) =
1

2
(ε(u)− ε̄(χ)) ·A(ε(u)− ε̄(χ)),

and

ψ =
1

4
(1− χ2)2

represent respectively the elastic energy and the double-well po-
tential; positive constant γ is related to the surface tension.
The order parameter χ characterizes the material phase. In case
of a binary alloy it is related to the volumetric fraction of one of
the two phases, characterized by different crystalline structures
of the components. It is assumed that χ = −1 is identified with
the phase a and χ = 1 with the phase b.
The elasticity tensor A = (Aijkl) and the eigenstrain tensor
ε̄(χ) = (ε̄ij(χ)) are given by

Aε(u) = λ̄trε(u)I + 2µ̄ε(u),

ε̄(χ) = (1− z(χ))ε̄a + z(χ)ε̄b,

where I is the identity tensor, λ̄, µ̄ are the Lamé constants satis-
fying µ̄ > 0, 3λ̄ + 2µ̄ > 0, ε̄a, ε̄b are constant eigenstrains of
phases a, b, and z : IR → [0, 1] is a sufficiently smooth interpo-
lation function such that

z(χ) = 0 for χ ≤ −1 and z(χ) = 1 for χ ≥ 1.

The term νAε(ut), with ν = const > 0, represents a viscous
stress tensor; ν is a viscosity coefficient.
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3. Global existence

In [2] we have proved that system (1)–(3) admits a unique
global solution (u, χ, µ) such that

u ∈ C1([0,∞); H2(Ω) ∩H1
0(Ω)) ∩ C2([0,∞); H1

0(Ω)),

χ ∈ C([0,∞); H2
N (Ω)) ∩ C1([0,∞); L2(Ω)),

µ ∈ C([0,∞); H2
N (Ω)),

∫

Ω

−χ(t)dx = χm :=

∫

Ω

−χ0dx

for all t ∈ [0,∞),

for initial data satisfying

(u(0), ut(0), utt(0), χ(0), χt(0)) ∈ W
:= {(H2(Ω) ∩H1

0(Ω))

× (H2(Ω) ∩H1
0(Ω))×H1

0(Ω)

×H2
N (Ω)× L2(Ω)},

where

H2
N (Ω) = {ξ : ξ ∈ H2(Ω), n · ∇ξ = 0 on S},∫

Ω

−χ0dx =
1

|Ω|
∫

Ω

χ0dx,

and utt(0) =: u2, χt(0) =: χ1 are calculated in accord with
(1)–(3).
Thus, the solution defines the nonlinear, strongly continuous
semigroup

S(t) : W 3 (u(0), ut(0), utt(0), χ(0), χt(0)) =: ζ0 7→
ζ(t) := (u(t), ut(t), utt(t), χ(t), χt(t)) ∈ W, t ∈ [0,∞).

The proof of the above result is based on the Galerkin
method. Firstly, the existence of a solution on a finite time in-
terval is proved. Secondly, the solution is prolonged step by step
up to∞. The crucial role in prolonging play absorbing-type esti-
mates with the property of exponentially time-decreasing impact
of the initial data. We use two kinds of such estimates: – the en-
ergy estimates derived from the original form of the system, and –
the regularity estimates derived from the time-differentiated form
of the system.

4. Asymptotic behaviour

In [3] it has been proved that for any initial data belonging
to W the trajectory of the solution converges as t → ∞ to the
ω-limit set of these data.

Moreover, it has been shown that the ω-limit set is compact
and connected subset of the space

Z := H1
0(Ω)×H1

0(Ω)× L2(Ω)×H1(Ω)× (H1(Ω))′,

and enjoys the standard properties, namely it is positive invariant
with respect to semigroup S(t) defined by the solution and the
total energy functional is constant on this set. It also has been
proved that every element of the ω-limit set is a solution of the
corresponding stationary problem.
Let

ω(ζ0) := {ζ∞ = (u∞, u∞,t, u∞,tt, χ∞, χ∞,t) ∈ W ⊂ Z :

∃{tn} ⊂ (0,∞), tn →∞ and

ζ(tn) = S(tn)ζ0 → ζ∞ strongly in Z}.

denote the ω-limit set of the initial data ζ0 ∈ W .
The main result reads as follows.

Theorem. [3] Let S(t) : W → W , t ≥ 0, be the nonlinear
semigroup generated by the unique solution of system (1)–(3).
Then:

(i) The ω-limit set ω(ζ0) of the initial data ζ0 =
(u0, u1, u2, χ0, χ1) ∈ W ⊂ Z is a nonempty, compact
and connected subset of the space Z . Furthermore, ω(ζ0)
is positive invariant with respect to S(t), i.e.,

S(t)ω(ζ0) ⊂ ω(ζ0) for any t ≥ 0;

(ii) If b = 0 then the map FΩ : W → IR, defined by

FΩ(ζ(t)) =

∫

Ω

[
1

2
|ut(t)|2 + W (ε(u(t)), χ(t))

+ ψ(χ(t)) +
γ

2
|∇χ(t)|2

]
dx,

is the Lyapunov functional for the semigroup S(t), i.e.,

FΩ(S(t)ζ0) ≤ FΩ(ζ0) for any ζ0 ∈ W, t ≥ 0;

FΩ is constant on the ω-limit set ω(ζ0).

(iii) Every element ζ∞ = (u∞, u∞,t, u∞,tt, χ∞, χ∞,t) of
the ω-limit set ω(ζ0) is characterized by

ζ∞ ≡ (u∞,0,0, χ∞, 0),

with functions u∞, χ∞ independent of time, solving the
stationary problem corresponding to (1)–(3):

−∇ ·W,ε(ε(u∞), χ∞) = 0 a.e. in Ω,

u∞ = 0 a.e. on S,

− γ∆χ∞ + ψ′(χ∞)

+ W,χ(ε(u∞), χ∞) = µ̄ a.e. in Ω,

n · ∇χ∞ = 0 a.e. on S,∫

Ω

−χ∞dx = χm :=

∫

Ω

−χ0dx,

where µ̄ is a constant to be determined along with func-
tions u∞, χ∞.

In the proof of this theorem the key role play absorbing-type
estimates established in the existence proof [2]. Due to such esti-
mates analysis similar to that in [4] is applied.
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